Uniwersytet Warszawski, Wydział Fizyki - Centralny System Uwierzytelniania
Strona główna

Quantitative research methods

Informacje ogólne

Kod przedmiotu: 2100-ERASMUS-QRM2
Kod Erasmus / ISCED: 14.0 Kod klasyfikacyjny przedmiotu składa się z trzech do pięciu cyfr, przy czym trzy pierwsze oznaczają klasyfikację dziedziny wg. Listy kodów dziedzin obowiązującej w programie Socrates/Erasmus, czwarta (dotąd na ogół 0) – ewentualne uszczegółowienie informacji o dyscyplinie, piąta – stopień zaawansowania przedmiotu ustalony na podstawie roku studiów, dla którego przedmiot jest przeznaczony. / (0310) Nauki społeczne i psychologiczne Kod ISCED - Międzynarodowa Standardowa Klasyfikacja Kształcenia (International Standard Classification of Education) została opracowana przez UNESCO.
Nazwa przedmiotu: Quantitative research methods
Jednostka: Wydział Nauk Politycznych i Studiów Międzynarodowych
Grupy: Przedmioty dla studentów ERASMUS WNPiSM - Lato
Punkty ECTS i inne: 5.00 Podstawowe informacje o zasadach przyporządkowania punktów ECTS:
  • roczny wymiar godzinowy nakładu pracy studenta konieczny do osiągnięcia zakładanych efektów uczenia się dla danego etapu studiów wynosi 1500-1800 h, co odpowiada 60 ECTS;
  • tygodniowy wymiar godzinowy nakładu pracy studenta wynosi 45 h;
  • 1 punkt ECTS odpowiada 25-30 godzinom pracy studenta potrzebnej do osiągnięcia zakładanych efektów uczenia się;
  • tygodniowy nakład pracy studenta konieczny do osiągnięcia zakładanych efektów uczenia się pozwala uzyskać 1,5 ECTS;
  • nakład pracy potrzebny do zaliczenia przedmiotu, któremu przypisano 3 ECTS, stanowi 10% semestralnego obciążenia studenta.
Język prowadzenia: angielski
Skrócony opis: (tylko po angielsku)

The course aims to develop students' understanding of quantitative methods in the social sciences. The course focuses primarily on developing students' skills in analyzing quantitative data; therefore, a significant part of the course is devoted to an introduction to statistics. The course is also complemented by a workshop devoted to basic applications of Python to statistical analysis, NLP, and image analysis.

Pełny opis: (tylko po angielsku)

Students will become familiar with quantitative conceptualizations of social and political life, their advantages and limitations. They will

Learn why it is worthwhile to learn the basics of statistics - why statistics is indispensable for describing social and political processes.

Students will learn the basics of descriptive statistics: univariate analysis (central tendency, dispersion, shape of distribution) and bivariate analysis (correlation).

analysis (correlation). They will also become familiar with the most elementary forms of data visualization, including histograms, box plots, and scatter plots,

plots, and scatter plots. During the workshops, students will learn how to use Python for statistical analysis. They will work with

IPython. They will learn how to install Python, work with iPython notebooks, install Python libraries, and write and run code. Data analysis will be

using NumPy, pandas, Seaborn, spaCy, and scikit-image.

Literatura: (tylko po angielsku)

Pyrczak F. & Oh D. M. (2018). Making sense of statistics : a conceptual overview (Seventh). Routledge Taylor & Francis Group.

And selected chapters from:

-> MacAonghuis I. (2022). Statistical inference and probability (1st ed.). SAGE Publications.

-> Martin P. (2022). Linear regression : an introduction to statistical models (1st ed.). SAGE Publications.

-> Martin P. & Martin P. (2022). Regression models for categorical and count data ed. 1. SAGE Publications.

-> McCoach D. B. & Cintron D. (2022). Introduction to modern modelling methods (1st ed.). SAGE Publications.

-> McBee M. (2022). Statistical approaches to causal analysis. SAGE Publications.

-> Castellani B. C. & Rajaram R. (2022). Big data mining and complexity. SAGE Publications.

-> McKinney W. (2022). Python for data analysis : data wrangling with pandas numpy and jupyter (Third). O'Reilly Media. and additional online materials.

Efekty uczenia się: (tylko po angielsku)

Upon completion, students will

-> Be able to collect, analyze and interpret quantitative data used in the process of designing and analyzing political processes (K_W02)

-> Design complex social research projects based on data and methods characteristic of quantitative analysis (K_U01).

-> Be able to use statistical methods to analyze political processes and their economic, social and cultural determinants (K_U03)

-> Prepare an oral presentation (individually and in a group) demonstrating their ability to apply quantitative data analysis (K_U06, K_K02).

-> Critically evaluate quantitative data sets available on the Internet (K_K03).

Metody i kryteria oceniania: (tylko po angielsku)

20% of final grade will be based on student activities (small projects, homework) in a discussion section. 40% of the final grade will be based on a coding project. 40% of the final grade will be based on the final test score. The test must be passed by the student. Students will be allowed two absences from the discussion section and two absences from the workshop.

Zajęcia w cyklu "Semestr letni 2023/24" (w trakcie)

Okres: 2024-02-19 - 2024-06-16
Wybrany podział planu:
Przejdź do planu
Typ zajęć:
Warsztaty, 30 godzin więcej informacji
Wykład, 30 godzin więcej informacji
Koordynatorzy: Bartosz Pieliński
Prowadzący grup: Bartosz Pieliński
Lista studentów: (nie masz dostępu)
Zaliczenie: Przedmiot - Zaliczenie na ocenę
Warsztaty - Zaliczenie
Wykład - Zaliczenie na ocenę
Opisy przedmiotów w USOS i USOSweb są chronione prawem autorskim.
Właścicielem praw autorskich jest Uniwersytet Warszawski, Wydział Fizyki.
ul. Pasteura 5, 02-093 Warszawa tel: +48 22 5532 000 https://www.fuw.edu.pl/ kontakt deklaracja dostępności USOSweb 7.0.3.0 (2024-03-22)