Uniwersytet Warszawski, Wydział Fizyki - Centralny System Uwierzytelniania
Strona główna

Advanced quantum mechanics for nanotechnology

Informacje ogólne

Kod przedmiotu: 1100-4INZ`AQMN
Kod Erasmus / ISCED: 13.2 Kod klasyfikacyjny przedmiotu składa się z trzech do pięciu cyfr, przy czym trzy pierwsze oznaczają klasyfikację dziedziny wg. Listy kodów dziedzin obowiązującej w programie Socrates/Erasmus, czwarta (dotąd na ogół 0) – ewentualne uszczegółowienie informacji o dyscyplinie, piąta – stopień zaawansowania przedmiotu ustalony na podstawie roku studiów, dla którego przedmiot jest przeznaczony. / (0533) Fizyka Kod ISCED - Międzynarodowa Standardowa Klasyfikacja Kształcenia (International Standard Classification of Education) została opracowana przez UNESCO.
Nazwa przedmiotu: Advanced quantum mechanics for nanotechnology
Jednostka: Wydział Fizyki
Grupy: Fizyka, II stopień; przedmioty do wyboru
Fizyka, II stopień; przedmioty sp. Matematyczne i komputerowe modelowanie procesów fizycznych
Fizyka, II stopień; przedmioty z listy "Wybrane zagadnienia fizyki współczesnej"
Fizyka; przedmioty prowadzone w języku angielskim
Inżynieria nanostruktur, II stopień; przedmioty dla I roku
Physics (Studies in English), 2nd cycle; courses from list "Advanced Quantum Mechanics"
Physics (Studies in English); 2nd cycle
Przedmioty obieralne na studiach drugiego stopnia na kierunku bioinformatyka
Punkty ECTS i inne: (brak) Podstawowe informacje o zasadach przyporządkowania punktów ECTS:
  • roczny wymiar godzinowy nakładu pracy studenta konieczny do osiągnięcia zakładanych efektów uczenia się dla danego etapu studiów wynosi 1500-1800 h, co odpowiada 60 ECTS;
  • tygodniowy wymiar godzinowy nakładu pracy studenta wynosi 45 h;
  • 1 punkt ECTS odpowiada 25-30 godzinom pracy studenta potrzebnej do osiągnięcia zakładanych efektów uczenia się;
  • tygodniowy nakład pracy studenta konieczny do osiągnięcia zakładanych efektów uczenia się pozwala uzyskać 1,5 ECTS;
  • nakład pracy potrzebny do zaliczenia przedmiotu, któremu przypisano 3 ECTS, stanowi 10% semestralnego obciążenia studenta.

zobacz reguły punktacji
Język prowadzenia: angielski
Kierunek podstawowy MISMaP:

chemia
fizyka

Założenia (opisowo):

(tylko po angielsku) The lecture is mostly addressed for students specializing in nano-science and nanotechnology, however, it can be also considered as the second course in the quantum mechanics. The main objective of the lecture is to make students familiar with the concepts of quantum mechanics that would facilitate the understanding of contemporary scientific papers in the fields relevant for nano-science, i.e., quantum chemistry, condensed matter physics, materials science, quantum optics. A particular attention will be given to solving practical problems.

Tryb prowadzenia:

w sali

Skrócony opis: (tylko po angielsku)

The course will contain the following groups of topics:

(i) The postulates of the quantum mechanics will be formulated using the concept of the density matrix that allows for description not only of pure quantum states but also states that are statistical mixture of pure states,

(ii) Composite systems and the theory of measurement process,

(iii) Bell inequalities and experimental confirmation of the validity of quantum mechanics,

(iv) Quantum mechanics of identical non-distinguishable particles,

(v) concept of field quantization and occupation number formalism,

(vi) Theory of open systems and connection between scattering theory and transport phenomena in nano-structures,

(v) The basics of the density functional Theory (DFT).

Pełny opis: (tylko po angielsku)

The course will consist of 15 lectures augmented by recitations. During the lectures the following issues will be addressed:

(1) Concept of pure quantum states, superposition of pure states, a statistical mixture of states, concept of density matrix operator, postulates of the quantum mechanics

(2) Theory of measurements in quantum mechanics, common set of commuting observables, preparation of a system in a given state

(3) Hilbert space for the COMPOSITE SYSTEMS, concept of tensor product, basis in the Hilbert space, concept of entanglement, entangled states

(4) System of two 1/2 spins as an example of a composite system with four dimensional Hilbert states, problem of addition of two spins as a particular case of addition of angular momenta, singlet and triplet states

(5) Experiments performed on the composite systems, measurements on a subsystem

(6) Einstein-Podolsky-Rosen paradox, 'verborgene' parameters, Bell inequalities, experiments that confirm validity of the quantum mechanics

(7) systems of non-distinguishable particles, permutations of particles, symmetry of their states, bosons, fermions, relation between parity of wave-function and statistics

(8) Quantum mechanics of systems of identical particles, examples - states of two spins in one quantum dot and two quantum dots, exchange energy and its consequences for magnetism

(9) Concept of field quantization, example of quantization of vibrations

(10) Fock-space and occupation number formalism (so-called 'second quantization'), creation and anihilation operators, Hamiltonian for interacting electrons

(11) Theory of electron gases (also in low dimensional nanostructures)

(12) Theory of open systems, basics of the scattering theory

(13) Relation between scattering theory and theory of charge transport in nanostructures

(14) Density Functional Theory as the basic tool for modeling of nanostructures

(15) Overview of the lecture, outline for further studies

Literatura: (tylko po angielsku)

J.J. Sakurai, "Modern Quantum Mechanics, Revised Edition", Edison Wesley Publishing Company, Inc., 1994

C. Cohen-Tannoudji, B. Diu, F. Laloe, "Quantum mechanics" Vol. 1 & 2

David K. Ferry, Stephen M. Goodnick, and Jonathan Bird, "Transport in Nanostructures", Cambridge University Press, 2009.

Eberhard Engel and Reiner M. Dreizler, "Density Functional Theory", Springer-Verlag, Berlin, 2011.

Efekty uczenia się: (tylko po angielsku)

Students should learn the basis of quantum mechanics formulated in terms of density matrix operator and get acquainted with the occupation number formalism. They should acquire the ability to solve basic practical problems in these fields.

Metody i kryteria oceniania: (tylko po angielsku)

Written exam consisting of a few problems to solve and multiple-choice test concerning the material of the lecture. All materials such as lecture notices, books, computers are allowed during the exam.

Przedmiot nie jest oferowany w żadnym z aktualnych cykli dydaktycznych.
Opisy przedmiotów w USOS i USOSweb są chronione prawem autorskim.
Właścicielem praw autorskich jest Uniwersytet Warszawski, Wydział Fizyki.
ul. Pasteura 5, 02-093 Warszawa tel: +48 22 5532 000 https://www.fuw.edu.pl/ kontakt deklaracja dostępności USOSweb 7.0.3.0 (2024-03-22)