Uniwersytet Warszawski, Wydział Fizyki - Centralny System Uwierzytelniania
Strona główna

Matematyka I

Informacje ogólne

Kod przedmiotu: 1100-1AF11
Kod Erasmus / ISCED: 11.1 Kod klasyfikacyjny przedmiotu składa się z trzech do pięciu cyfr, przy czym trzy pierwsze oznaczają klasyfikację dziedziny wg. Listy kodów dziedzin obowiązującej w programie Socrates/Erasmus, czwarta (dotąd na ogół 0) – ewentualne uszczegółowienie informacji o dyscyplinie, piąta – stopień zaawansowania przedmiotu ustalony na podstawie roku studiów, dla którego przedmiot jest przeznaczony. / (0541) Matematyka Kod ISCED - Międzynarodowa Standardowa Klasyfikacja Kształcenia (International Standard Classification of Education) została opracowana przez UNESCO.
Nazwa przedmiotu: Matematyka I
Jednostka: Wydział Fizyki
Grupy: Astronomia, fizyka, I stopień; przedmioty do wyboru z grupy matematyka
Astronomia, I stopień; przedmioty dla I roku
Biofizyka; przedmioty dla I roku
Energetyka jądrowa; przedmioty dla I roku
Fizyka, I stopień; przedmioty obowiązkowe dla I roku
Fizyka, ścieżka fizyka medyczna; przedmioty dla I roku
Fizyka, ścieżka neuroinformatyka; przedmioty dla I roku
Fizyka, ścieżka standardowa; przedmioty dla I roku
Nanoinżynieria; przedmioty dla I roku
Nauczanie fizyki; przedmioty dla I roku
ZFBM - Zastosowania fizyki w biologii i medycynie; przedmioty dla I roku
Strona przedmiotu: https://www.fuw.edu.pl/~gmoreno/MI_25-26/
Punkty ECTS i inne: 14.00 Podstawowe informacje o zasadach przyporządkowania punktów ECTS:
  • roczny wymiar godzinowy nakładu pracy studenta konieczny do osiągnięcia zakładanych efektów uczenia się dla danego etapu studiów wynosi 1500-1800 h, co odpowiada 60 ECTS;
  • tygodniowy wymiar godzinowy nakładu pracy studenta wynosi 45 h;
  • 1 punkt ECTS odpowiada 25-30 godzinom pracy studenta potrzebnej do osiągnięcia zakładanych efektów uczenia się;
  • tygodniowy nakład pracy studenta konieczny do osiągnięcia zakładanych efektów uczenia się pozwala uzyskać 1,5 ECTS;
  • nakład pracy potrzebny do zaliczenia przedmiotu, któremu przypisano 3 ECTS, stanowi 10% semestralnego obciążenia studenta.
Język prowadzenia: polski
Kierunek podstawowy MISMaP:

fizyka

Rodzaj przedmiotu:

obowiązkowe

Założenia (opisowo):

Osoba przystępująca do nauki przedmiotu Matematyka I powinna posiadać wiedzę z matematyki wymaganą na egzaminie maturalnym na poziomie podstawowym.

Tryb prowadzenia:

w sali

Skrócony opis:

Materiał Matematyki I obejmuje podstawy algebry, geometrii i analizy matematycznej.

Zagadnieniami omawianymi w ramach tego przedmiotu są między innymi liczby rzeczywiste, liczby zespolone, przestrzenie wektorowe, przestrzenie afiniczne i euklidesowe, ciągi, szeregi liczbowe i potęgowe, funkcje elementarne i ich własności, rachunek różniczkowy i całkowy funkcji jednej zmiennej.

Pełny opis:

Lista zagadnień (nie jest to program wykładu)

Elementy logiki

Zbiory i sposoby ich opisu

Funkcje

Liczby naturalne,

-indukcja matematyczna

-symbol Newtona

Liczby całkowite i wymierne

Liczby rzeczywiste

Funkcje elementarne

-wielomiany

-funkcje wymierne

-funkcje trygonometryczne

-funcja wykładnicza

-funkcje hiperboliczne

-injekcja, surjekcja, bijekcja

-współrzędne biegunowe

-funkcja odwrotna do danej

-funcja logarytmiczna

-funkcje cykometryczne (odwrotne do trygonometrycznych)

Ciągi

-ciągi monotoniczne, ciągi ograniczone

-granica ciągu podstawowe twierdzenia

-symbole nieoznaczone

Granica funkcji w punkcie

Ciągłość funkcji

Pochodna

Twierdzenia o wartości średniej

Wzór Taylora

Szeregi Taylora

Reguły de l'Hospitala

Badanie funkcji

Funkcje pierwotne

-całkowanie przez części

-całkowanie przez podstawienie

-całkowanie funkcji wymiernych

Całka Riemanna funkcji jednej zmiennej

Szeregi

-zbieżność, kryteria zbieżności.

-działania na szeregach

Szeregi potęgowe

-promień zbieżności

Literatura:

Podręczniki:

1. F. Leja, Rachunek różniczkowy i całkowy.

2. K. Kuratowski, Rachunek różniczkowy i całkowy.

3. W. Rudin, Podstawy analizy matematycznej.

4. G.M. Fichtenholz, Rachunek różniczkowy i całkowy.

5. Strona www wykładu: http://www.fuw.edu.pl/materialy-dydaktyczne.html w zakładce Matematyka I

6. Materiały http://brain.fuw.edu.pl/edu/Strona_główna

7. G. Moreno, Skrypt wykładu: plik main.pdf w katalogu https://drive.google.com/drive/folders/11xRquw91Ur7EshA0JWTWj4joWwcNb4j_?usp=sharing

Zbiory zadań:

1. W.Leksiński, B. Macukow, Matematyka w zadaniach dla kandydatów na wyzsze uczelnie, t 1 i 2.

2. W. Krysicki, L. Włodarski, Analiza Matematyczna w zadaniach

3. Wiesław Pusz, Zbiór zadań z analizy matematycznej

4. Aleksiej I. Kostrikin, Zbiór zadań z algebry

Efekty uczenia się:

Osoba, która zdała egzamin z Matematyki I powinna

- biegle posługiwać się funkcjami elementarnymi

- posiadać podstawową wiedzę na temat przestrzeni wektorowych i geometrii euklidesowych

- umieć posługiwać się rachunkiem różniczkowym funkcji jednej zmiennej w zakresie pozwalającym na badanie własności tych funkcji takich jak ciągłość, różniczkowalność,

zachwanie asymptotyczne, jak również pozwalającym na szukanie ekstremów

- umieć stosować rachunek całkowy

- umieć posługiwać się liczbami zespolonymi

- przybliżać funkcje elementarne wielomianami, rozwijać funkcje elementarne w szereg Taylora oraz umieć posługiwać się narzędziami do badania zbieżności szeregów

Metody i kryteria oceniania:

Mechanizm oceniania jest następujący:

1. Średnia dwóch kolokwium oraz egzaminu pisemnego zostanie obliczona.

2. Powyższa średnia oznacza ocenę startową egzaminu ustnego. UWAGA! Ocena startowa nazywa się ,,startowa”, bo jest ona tylko początkiem: nawet student mający 5 jako ocenę startową musi podejść do egzaminu ustnego, żeby przedmiot został zaliczony.

3. Na egzaminie ustnym można zdobyć co najwyżej 1 punkt; egzamin ustny rozważa się zaliczony, jeśli wynik nie jest poniżej 0,6.

4. Na egzaminie ustnym, każdy student ma prawo do wylosowania trzech pytań: jeśli odpowie na pierwsze wylosowane pytanie, dostaje 100% oceny; jeśli student nie mogę lub nie chce odpowiedzieć na pierwsze pytanie, może przejść do drugiego pytania, ale dostaje 80% oceny; ostatnia szansa to 60% oceny.

5. Jeśli suma oceny startowy i wyniku egzaminu ustnego jest ostro mniejsza niż 3, to zostanie przybliżona do 2 (nawet jeśli wynosi 2,999): ocena za aktywność nie ma żadnego wpływu w takim przypadku.

6. Jeśli powyższa suma jest większa niż 3, to można dodać do niej ocenę za aktywność, odpowiednio znormalizowaną na 0,5: taka suma zostanie przybliżona do najbliższej połowy całkowitej liczby od dołu; na przykład, jeśli suma wynosi 3 a ocena za aktywność wynosi 100%, to student dostanie 3,5, co można dostać zarówno, jeśli suma wynosi 3,3 a ocena za aktywność wynosi 40% (poniżej 40% dostałby 3).

7. Wszystko równe bądź powyżej 5,5 zostanie rozpatrywane jako 5!.

8. Osoba, która dostanie 2, może podejść do egzaminów poprawkowych (pisemnego, tak i ustnego), aby spróbować tą ocenę poprawić.

Praktyki zawodowe:

Nie dotyczy

Zajęcia w cyklu "Semestr zimowy 2024/25" (zakończony)

Okres: 2024-10-01 - 2025-01-26
Wybrany podział planu:
Przejdź do planu
Typ zajęć:
Ćwiczenia, 90 godzin, 300 miejsc więcej informacji
Ćwiczenia wykładowe, 30 godzin, 300 miejsc więcej informacji
Wykład, 60 godzin, 300 miejsc więcej informacji
Koordynatorzy: Giovanni Moreno
Prowadzący grup: Jan Chwedeńczuk, Wojciech Kamiński, Katarzyna Krajewska, Giovanni Moreno, Maciej Ogrodnik, Jerzy Wojtkiewicz
Lista studentów: (nie masz dostępu)
Zaliczenie: Przedmiot - Egzamin
Wykład - Egzamin

Zajęcia w cyklu "Semestr zimowy 2025/26" (w trakcie)

Okres: 2025-10-01 - 2026-01-25
Wybrany podział planu:
Przejdź do planu
Typ zajęć:
Ćwiczenia, 90 godzin, 300 miejsc więcej informacji
Ćwiczenia wykładowe, 30 godzin, 300 miejsc więcej informacji
Wykład, 60 godzin, 300 miejsc więcej informacji
Koordynatorzy: Giovanni Moreno
Prowadzący grup: Aliaksei Bohdan, Małgorzata Jakubowska, Katarzyna Krajewska, Giovanni Moreno
Strona przedmiotu: https://www.fuw.edu.pl/~gmoreno/MI_25-26/
Lista studentów: (nie masz dostępu)
Zaliczenie: Przedmiot - Egzamin
Wykład - Egzamin
Opisy przedmiotów w USOS i USOSweb są chronione prawem autorskim.
Właścicielem praw autorskich jest Uniwersytet Warszawski, Wydział Fizyki.
ul. Pasteura 5, 02-093 Warszawa tel: +48 22 5532 000 https://www.fuw.edu.pl/ kontakt deklaracja dostępności mapa serwisu USOSweb 7.2.0.0-8 (2025-10-29)