Structural Equation Modeling - Introduction
Informacje ogólne
Kod przedmiotu: | 2500-PL-PS-SP15-17 |
Kod Erasmus / ISCED: |
14.4
|
Nazwa przedmiotu: | Structural Equation Modeling - Introduction |
Jednostka: | Wydział Psychologii |
Grupy: | |
Punkty ECTS i inne: |
2.00
|
Język prowadzenia: | angielski |
Założenia (opisowo): | spec 315, Completed course on advanced linear regression |
Skrócony opis: |
This course aims to introduce students to structural equation modeling (SEM) – a statistical technique that tests the relationships between observed and latent variables. Throughout the consecutive classes participants will be presented with different research questions that may be addressed with SEM. The classes will involve a combination of lectures and lab sessions focusing on the specification, estimation, and interpretation of structural models. |
Efekty uczenia się: |
First, students will acquire knowledge about the possibilities posed by structural equation modeling. Second, participants will gain familiarity, experience, and confidence in estimating and interpreting basic structural models. |
Zajęcia w cyklu "Semestr letni 2024/25" (zakończony)
Okres: | 2025-02-17 - 2025-06-08 |
Przejdź do planu
PN WT SEM
ŚR CZ PT |
Typ zajęć: |
Seminarium, 15 godzin
|
|
Koordynatorzy: | Paulina Górska | |
Prowadzący grup: | Paulina Górska | |
Lista studentów: | (nie masz dostępu) | |
Zaliczenie: |
Przedmiot -
Zaliczenie na ocenę
Seminarium - Zaliczenie na ocenę |
|
Pełny opis: |
Psychological constructs such as intelligence, neuroticism or trust cannot be observed directly – instead, their presence is inferred from manifest variables, such as item responses. Structural equation modeling (SEM) is a statistical technique that is designed to test the relationships between observed and latent variables. Combining the features of factor analysis (the measurement part of model) and linear regression (the structural part of a model), SEM allows for separating measurement error, as well as testing complex relationships between latent variables. This course aims to introduce students to SEM – its underlying logic, assumptions, and application. Throughout the consecutive classes, participants will be presented with different kinds of research questions that may be addressed with SEM. We will start with an overview of SEM applications. Next, we will discuss Confirmatory Factor Analysis (CFA), path analysis, and full SEM. The classes will involve a combination of lectures and lab sessions focusing on specification, estimation, and interpretation of structural equation models. All analyses would be performed in R lavaan. |
|
Literatura: |
Main texts: Brown, T. A. (2006). Confirmatory Factor Analysis for applied research. New York: Guilford Press. Field, A., Miles, J., & Field, Z. (2012). Discovering statistics using R. London: Sage. Gana, K., & Broc, G. (2019). Structural Equation Modeling with lavaan. Hoboken, NJ: Wiley. Kline, R. B. (2015). Principles and practice of Structural Equation Modeling. New York: Guilford Press. Little, T. D. (2013). Longitudinal structural equation modeling. New York: Guilford Press. |
Właścicielem praw autorskich jest Uniwersytet Warszawski, Wydział Fizyki.