Atoms, molecules, clusters
Informacje ogólne
Kod przedmiotu: | 1100-4AMC |
Kod Erasmus / ISCED: |
13.2
|
Nazwa przedmiotu: | Atoms, molecules, clusters |
Jednostka: | Wydział Fizyki |
Grupy: |
Physics (Studies in English), 2nd cycle; specialization courses Physics (Studies in English); 2nd cycle |
Punkty ECTS i inne: |
3.00
|
Język prowadzenia: | angielski |
Kierunek podstawowy MISMaP: | fizyka |
Założenia (opisowo): | Lecture for students interested in details of structure and spectra of atoms and molecules. Courses required to register for the class: Quantum mechanics I, Introduction to optics and solid state physics (or equivalent lectures) |
Tryb prowadzenia: | w sali |
Skrócony opis: |
Application of methods of quantum mechanics and group theory for description of energy structure and spectra of atoms and molecules. |
Pełny opis: |
Program: 1. Elements of group theory and its connection with quantum mechanics. 2. Hydrogen atom: a) Schrödinger equation b) fine structure, Lamb shift. 3. Alkali atoms. 4. Helium atom. 5. Multielectron atoms: a) independent electron approximation in a central potential b) atomic terms in L-S and j-j coupling c) electron configuration and determination of the term manifold d) Hund rules e) the periodic table. 6. Rydberg atoms. 7. The Zeeman effect. 8. The Stark effect. 9. Separation of electron and nuclear motion in a molecule, adiabatic and Born-Oppenheimer approximations, potential energy surfaces. 10. Electronic structure of molecules: a) diatomic molecules, molecular orbitals, orbital energies, electronic states and their energies b) linear molecules c) polyatomic molecules: H2O, hydrocarbons, benzene, polyenes d) clusters. 11. Nuclear motion in molecules - vibrations and rotation: a) diatomic molecules - vibration of nuclei, rotation of molecules, structure of energy levels of diatomic molecules b) polyatomic molecules - rotational energy levels, classical treatment of vibrations, normal coordinates, quantum approach, potential surfaces with multiple minima, Coriolis interaction. 12. Molecular spectra: a) rotational spectra; b) vibrational spectra (change of vibrational level, rotational structure of vibrational transitions); c) electronic transitions; d) relaxation pathways for molecules. e) Raman spectra. |
Literatura: |
1. P.W. Atkins, Molecular quantum mechanics. 2. F.A. Cotton, Chemical applications of group theory. 3. A.S. Dawydow, Quantum mechanics (and other textbooks on QM). 4. H. Haken, H.Ch. Wolf, The Physics of Atoms and Quanta. 5. H. Haken, H.Ch. Wolf, Molecular Physics and Elements of Quantum Chemistry. 6. M. Hamermesh, Group theory and its application to physical problems. 7. G.K. Woodgate, Elementary atomic structure. (in Polish) 8. W. Kołos, Chemia kwantowa. 9. P. Kowalczyk, Fizyka cząsteczek. |
Efekty uczenia się: |
The student will be able to explain and describe structure of atoms and molecules and their interaction with radiation in the language of quantum mechanics. |
Metody i kryteria oceniania: |
Expected work load: Class attendance: 30 h – 1 ECTS Preparation for the final exam: 60h – 2 ECTS Final mark based on an oral or written test examination |
Praktyki zawodowe: |
none |
Zajęcia w cyklu "Semestr letni 2023/24" (zakończony)
Okres: | 2024-02-19 - 2024-06-16 |
Przejdź do planu
PN WT WYK
ŚR CZ PT |
Typ zajęć: |
Wykład, 30 godzin
|
|
Koordynatorzy: | Paweł Kowalczyk | |
Prowadzący grup: | Paweł Kowalczyk | |
Lista studentów: | (nie masz dostępu) | |
Zaliczenie: | Egzamin |
Właścicielem praw autorskich jest Uniwersytet Warszawski, Wydział Fizyki.